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Abstract. We construct the deformed generators of Schrödinger symmetry consistent with noncommuta-
tive space. The examples of the free particle and the harmonic oscillator, both of which admit Schrödinger
symmetry, are discussed in detail. We construct a generalised Galilean algebra where the second central ex-
tension exists in all dimensions. This algebra also follows from the Inonu–Wigner contraction of a generalised
Poincaré algebra in noncommuting space.

1 Introduction

The introduction of noncommuting relativistic coordinate
spacetime,

[x̂µ, x̂ν ] = iθµν , µ, ν = 0, i , (1)

for constant θµν implies, among other things, a breakdown
of Lorentz invariance. From an algebraic point of view,
it implies that the standard (undeformed) Lorentz trans-
formation law for the coordinates is not obtained.
Recently it has been found by Wess [1] and collabo-

rators [2–4] that, by appropriately deforming the classi-
cal Poincaré generators, consistency with (1) is achieved
while preserving the original Poincaré algebra. In other
words, a new representation of the Poincaré algebra that
is compatible with (1) has been obtained. But the coprod-
uct rules are modified. Also, the modified coproduct rules
agree with those found [5, 6] from another (quantum-group
theoretic) approach based of the application of twist func-
tions [7]. The extension of these ideas to field theory and
possible implications for Noether symmetry are discussed
in [8, 9]. Very recently, the deformed Poincaré generators
for a Lie algebraic θ (rather than a constant θ) have also
been analysed [10].
In this paper we consider the invariance of the Schrö-

dinger group [11] (this contains, in addition to the centrally
extended Galilei group, two conformal generators, namely
dilatations and special conformal transformations or ex-
pansions) on nonrelativistic noncommutative space,

[

x̂i, x̂j
]

= iθij . (2)

There are some good reasons for pursuing such an in-
vestigation. The question of this invariance is interesting
in its own right. Also, the Schrödinger group is an en-
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tirely consistent group of spacetime transformations which
in some respects has a more complex structure than the
Poincaré group. Finally, the second central extension [12]
of the Galilei group is not well understood, and it would be
worthwhile to see if this aspect can be illuminated from the
deformations.
In this paper we consider the free particle and the

harmonic oscillator. Although both these models ad-
mit Schrödinger symmetry, the structure of generators is
quite different. The deformed generators compatible with
(2) are computed. These generators satisfy the standard
Schrödinger algebra. Thus as happens for Poincaré symme-
try, a new representation of the Schödinger algebra is found
that is consistent with (2).
We also discuss some applications of the general formal-

ism. The structure of the deformed generators is computed
in both the coordinate and momentum representations. In
the coordinate picture the deformations are still there but
in the momentum picture these cancel out and the func-
tional form of the generators is identical to that obtained
for usual (commutative space) theory. Implications of this
result are discussed.
We have next considered a more general one-parameter

class of deformed generators. It leads to a closure of the
algebra which is however more general and hence distinct
from the standard Galilean algebra. This generalised al-
gebra is also derived from a contraction of the deformed
Poincaré algebra recently discussed in [4]. Moreover, it is
found that the boosts do not commute. This (second) cen-
tral extension is valid in any dimensions. It is a new result
since the second central extension is found only in two
dimensions [12, 13, 16, 17]. For the special case of two di-
mensions, we show that our generalised algebra reduces to
the standard Galilean algebra, including the second central
extension.
This paper is broadly divided into two sections; in the

first the formulation is set up, while the second is devoted
to applications.
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2 Deformed Schrödinger symmetry

The n-dimensional Schrödinger algebra is given by aug-
menting the Galilean algebra involving rotations (J ij),
translations (Pi), Hamiltonian (H) and boosts (Gi) with
the algebra of dilatations (D) and expansion or special con-
formal transformations (K). The relations are
[

J ij ,J k�
]

=−i
(

δkjJ i�− δkiJ j�+ δ�jJ ki− δ�iJ kj
)

,
[

Pi,P j
]

= 0 ,
[

Gi,Gj
]

= 0 ,
[

Pi,J jk
]

=−i
(

δijPk− δikP j
)

,
[

Gi,J jk
]

=−i
(

δijGk− δikGj
)

,
[

Pi,Gj
]

=−iδijM ,
[

H,Pi
]

= 0 ,
[

H,Gi
]

=−iPi ,
[

J ij ,H
]

= 0 ,
[

J ij ,D
]

= 0 ,
[

J ij ,K
]

= 0 ,
[

D,Gi
]

=−iGi ,
[

K,Gi
]

= 0 ,
[

D,Pi
]

= iPi ,
[

K,Pi
]

= iGi ,

[H,D] =−2iH , [H,K] =−iD ,

[D,K] =−2iK , (3)

where i, j, . . .= 1, 2, 3, . . . , n, and the mass parameterM
commutes with everything.
The standard free-particle representation of this alge-

bra is given by

J ij = xipj−xjpi (angular momentum) ,

H=
p2

2m
(energy) ,

D =
1

2

(

pixi+xipi
)

−
p2

m
t (dilatations) ,

K =
1

2
m

(

xi−
pi

m
t

)2

(expansions) ,

Gi =mxi−pit (Galilean boosts) ,

Pi = pi (linear momentum) ,

M=m (mass) . (4)

Using the (commutative-space) canonical brackets,
[

xi, xj
]

=
[

pi, pj
]

= 0,
[

xi, pj
]

= iδij , (5)

the algebra (3) is easily reproduced from (4).
For noncommutative space, (2) has to be augmented by

the algebra:
[

p̂i, p̂j
]

= 0,
[

x̂i, p̂j
]

= iδij , (6)

which conform to the usual form (5).
As is known from an analysis of Poincaré generators,

the angular momentum operator in (4) is inconsistent with
the noncommutative algebra (2) since the J –x̂–x̂ Jacobi
identity is violated if the undeformed transformation law is
taken:

[

J ij , x̂k
]

= i
(

δikx̂j − δjkx̂i
)

. (7)

An appropriate deformation of the transformation law is
necessary to restore the Jacobi identity. It is simple to
check that if [1, 4]

[

̂J ij , x̂k
]

= i
(

δikx̂j − δjkx̂i+
1

2
θik p̂j−

1

2
θjk p̂i

+
1

2
δikθjmp̂m−

1

2
δjkθimp̂m

)

; (8)

then the ̂J –x̂–x̂ Jacobi identity is indeed satisfied. A rep-
resentation for ̂J ij that yields the above relation is given
by [1, 4]

̂J ij = x̂ip̂j− x̂j p̂i+
1

2
θimp̂mp̂j−

1

2
θjmp̂mp̂i. (9)

Note that this deformed operator also satisfies the usual
angular momentum algebra:
[

̂J ij , ̂J k�
]

=−i
(

δkj ̂J i�− δki ̂J j�+ δ�j ̂J ki− δ�i ̂J kj
)

.

(10)

This is verified by using the basic commutators (2) and (6).
It should be mentioned that a more general transform-

ation law (8) involving coefficients λ1 and λ2 is possible [4]
which is also compatible with (2). That would lead to
a more general structure of the angular momentum opera-
tor (9). However the choice (9) is singled out, since it alone
satisfies the standard closure of the angular momentum al-
gebra as given in (10).
We now obtain the deformation of the other generators.

The linear momentum p̂i and Hamiltonian p̂2/2m retain
their original forms, basically because the algebra of p̂i is
identical to pi. For boosts (G) a deformation is necessary.
Considering the minimal (i.e. least order in θ) deformation,
we obtain the following structure:

̂Gi =mx̂i− tp̂i+λ1mθ
ij p̂j+λ2m

3θij x̂j , (11)

where λ1 and λ2 are, as yet, undetermined coefficients. In
order that the standard Galilean algebra involving the ro-
tations, translations and boosts is retained we find λ1 =
1/2, λ2 = 0. Also, the consistency of (11) with (2) is easily
established as the relevant Jacobi identity ̂G–x̂–x̂ is triv-
ially satisfied.
Proceeding in a similar manner deformed dilatations

and expansions are obtained. Apart from (9), the other de-
formed generators are given by

̂H =
p̂2

2m
,

̂P i = p̂i,

̂Gi =mx̂i− tp̂i+
m

2
θij p̂j ,

̂D =
1

2

(

p̂ix̂i+ x̂ip̂i
)

−
1

m
p̂2t,

̂K =
m

2

(

x̂i−
p̂i

m
t

)2

+
m

2
θij x̂ip̂j−

m

8
θi�θ�mp̂ip̂m.

(12)
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These deformed generators are all consistent with (2) and
satisfy the usual Schrödinger algebra (3). Note that for
expansions (̂K) the minimal deformation involves a term
quadratic in θ.
We have thus obtained the cherished deformed

Schrödinger symmetry for a free particle on noncommu-
tative space exactly in analogy to the Poincaré symmetry
on noncommutative spacetime. For θ = 0, the deformed
generators (12) reduce to the undeformed ones given in (4).
A more involved analysis is required for the harmonic

oscillator problem which also carries a Schrödinger sym-
metry [14, 15]. The Hamiltonian of an n-dimensional os-
cillator is given by H = p2/2m+mω2x2/2. The classical
trajectories are x(t) =A cosωt+(1/mω)B sinωt. In terms
of the parametersA andB,

A= x cosωt−
p

mω
sinωt ,

B=mωx sinωt+p cosωt , (13)

the components of the moment map (generators) are given
by

J ij = xipj−xjpi ,

P i =Bi =mωxi sinωt+pi cosωt ,

Gi =mAi =mxi cosωt−
pi

ω
sinωt ,

H =
1

2m
B2 =

1

2

[

mω2x2 sin2 ωt+
p2

m
cos2 ωt

+
1

2
ω
(

xipi+pixi
)

sin 2ωt

]

,

M=m,

D =
1

2

(

BiAi+AiBi
)

=
1

2

(

mω2x2−
p2

mω

)

sin 2ωt+
1

2

(

xipi+pixi
)

cos 2ωt,

K =
1

2
mA2 =

1

2
m

[

x2 cos2 ωt+
p2

m2ω2
sin2 ωt

−
xipi+pixi

2mω
sin 2ωt

]

. (14)

Now we compute the deformed versions of these oper-
ators. The angular momentum is of course just given by
(9). For the other operators we observe that they appear as
certain combinations of A and B. Hence proper deforma-
tions of these operators should be sufficient. The canonical
algebra,

[A,A] = [B,B] = 0, [A,B] = i, (15)

is preserved by the deformations

̂Ai = x̂i cosωt−
p̂i

mω
sinωt+

1

2
θij p̂j cosωt ,

̂Bi =mωx̂i sinωt+ p̂i cosωt+
mω

2
θij p̂j sinωt . (16)

Consequently the deformed generators are given by

̂P i = ̂Bi =mωx̂i sinωt+ p̂i cosωt+
1

2
mωθij p̂j sinωt,

̂Gi =m ̂Ai =mx̂i cosωt−
p̂i

ω
sinωt+

1

2
mθij p̂j cosωt,

̂H=
1

2m
̂B2

=
1

2

(

mω2x̂2+
1

2
mω2θij

(

x̂ip̂j+ p̂jx̂i
)

+
1

4
mω2θijθik p̂j p̂k

)

sin2 ωt+
p̂2

2m
cos2 ωt

+
1

4
ω
(

x̂ip̂i+ p̂ix̂i
)

sin 2ωt ,

̂D =
1

2

(

̂Bi ̂Ai+ ̂Ai ̂Bi
)

=
1

2

(

mω2x̂2−
p̂2

mω
+mωθijx̂ip̂j+

mω

2
θijθik p̂j p̂k

)

× sin 2ωt+
1

2

(

x̂ip̂i+ p̂ix̂i
)

cos 2ωt ,

̂K =
1

2
m̂A2

=
1

2
m

[

x̂2 cos2 ωt+
p̂2

m2ω2
sin2 ωt−

x̂ip̂i+ p̂ix̂i

2mω
sin 2ωt

+ θij x̂ip̂j cos2 ωt+
1

4
θijθikp̂j p̂k cos2 ωt

]

. (17)

All these are consistent with (2) and satisfy the Schrödinger
algebra (3). The basic commutators (2) and (6) are needed
to check this algebra.
In the ω→ 0 limit the harmonic oscillator goes over to

the free particle. It is easy to verify that, in this limit, the
deformed generators (17) reduce to those found in (12) for
the free-particle case.

3 Applications

Here we consider some applications of the general formal-
ism.

3.1 Deformed generators in different representations

In the usual commutative space a symmetry exists between
the coordinates x and momenta p. Each is an observable
with eigenvalues extending from−∞ to +∞, and the usual
commutation relations involving x and p remain invariant
if x and p are interchanged and “i” is replaced by “−i”. One
may then set up the coordinate representation in which x is
diagonal and p=−i ∂

∂x
with h̄= 1. Alternatively it is also

feasible to write the momentum representation where p is
diagonal and x= i ∂∂p .
In the noncommutative space, on the other hand, the

symmetry between x and p is lost and some nontrivial dif-
ferences among the two representations are expected. From
a purely algebraic point of view one may use either repre-
sentation. However if a wavefunction is considered that can



544 R. Banerjee: Deformed Schrödinger symmetry on noncommutative space

be expanded in a complete commuting set of observables
(the basis vectors), then the momentum representation is
singled out. It appears that, for noncommutative space, the
momentum representation is more favoured. This is even
true from an algebraic point of view, as we now demon-
strate. For simplicity we confine ourselves to the Galilean
sector.
The Galilean generators (9) and (12) in the coordinate

representation, x̂i = x̂i, p̂i =−i ∂
∂x̂i
, are given by

̂J ij =−ix̂i
∂

∂x̂j
+ix̂j

∂

∂x̂i
−
1

2
θim

∂

∂x̂m
∂

∂x̂j

+
1

2
θjm

∂

∂x̂m
∂

∂x̂i
,

̂H=−
1

2m

∂2

∂x̂2
,

̂P i =−i
∂

∂x̂i
,

̂Gi =mx̂i+it
∂

∂x̂i
− i
m

2
θij
∂

∂x̂j
, (18)

where the derivatives satisfy the algebra [1]
[

∂

∂x̂i
,
∂

∂x̂j

]

= 0 ,

[

∂

∂x̂i
, x̂j
]

= δij . (19)

Using these relations and taking into account (2), the gen-
erators (18) are seen to satisfy the usual Galilean algebra.
In the momentum representation, on the other hand, we

have

p̂i = p̂i , x̂i = i
∂

∂p̂i
−
1

2
θij p̂j ,

where the derivative satisfies commutation rules similar to
(19):

[

∂

∂p̂i
,
∂

∂p̂j

]

= 0 ,

[

∂

∂p̂i
, p̂j
]

= δij .

Note that there is a deformation in the representation of x̂i

to correctly reproduce (2) and (6). It also shows the loss of
symmetry between the two representations.
The deformed rotation operator (9) now has the form

̂J ij = p̂j x̂i− p̂ix̂j+
1

2
θimp̂mp̂j−

1

2
θjmp̂mp̂i

= ip̂j
∂

∂p̂i
− ip̂i

∂

∂p̂j
.

The θ-dependent terms cancel out completely. The same
happens for the boost and we get

̂Gi = im
∂

∂p̂i
− tp̂i .

We thus find that all the generators have exactly the same
structure as in the commutative description.1 The validity

1 This is also true for the conformal generators. Even for the
Poincaré case the same feature persists as we have checked by
considering the expressions given in [1, 2].

of the Galilean (or the Schrödinger) algebra in this repre-
sentation becomes obvious. It shows the naturalness of the
momentum representation – a fact which we had argued for
in more general considerations.

3.2 Inonu–Wigner contraction
and second central extension

It has been known for a long time that the Galilei group in
(2+1) dimensions admits a two-parameter central exten-
sion [12]. One of these is the mass m which is present in
all dimensions. The other is somewhat exotic and confined
specifically to two space dimensions. It corresponds to spin
which can be any real number [13, 16, 17].
Here we show that deformed Galilean generators allow

for a general type of algebra leading to a second central ex-
tension that persists in any (and not just two) dimensions.
Furthermore such an algebra is also obtained by means of
an Inonu–Wigner contraction of the generalised Poincaré
algebra.
Let us consider the general form for boosts given in (11)

with λ2 = 0 and λ1 = λ:

˜Gi =mx̂i− tp̂i+λmθij p̂j . (20)

Correspondingly, a generalised version of the rotation op-
erator (9) is written as

˜J ij = x̂ip̂j− x̂j p̂i+λ
(

θimp̂j− θjmp̂i
)

p̂m . (21)

Then the algebra of these operators is given by
[

˜Gi, ˜Gj
]

= (1−2λ)im2θij , (22)
[

˜Gi, ˜J k�
]

= i
(

δi� ˜Gk− δik ˜G�
)

+im(1−2λ)
(

θik p̂�− θi�p̂k
)

, (23)
[

˜J ij , ˜J k�
]

= i
(

δik ˜J j�− δjk ˜J i�+ δj� ˜J ik− δi� ˜J jk
)

+i(1−2λ)

×
(

θikp̂j p̂�− θjkp̂ip̂�− θi�p̂j p̂k+ θj�p̂ip̂k
)

.

(24)

The algebra with the momentum and the Hamiltonian
is unchanged. We find that the boosts do not commute,
which yields the second central extension. This is true in
any dimensions and not just for two where it is usually ob-
served [12, 13, 16, 17].
It is possible to show that the above generalised alge-

bra is obtained from a group contraction of a generalised
Poincaré algebra recently discussed in [4]. There the angu-
lar momentum is defined as

̂J µν = x̂µp̂ν − x̂ν p̂µ+λ (θµαp̂ν − θναp̂µ) p̂α , (25)

which yields [4]
[

˜J µν , ˜J ρσ
]

= i
(

δµρ ˜J νσ− δνρ ˜J µσ+ δνσ ˜J µρ− δµσ ˜J νρ
)

+i(1−2λ)
(

θµρp̂ν p̂σ− θνρp̂µp̂σ

− θµσ p̂ν p̂ρ+ θνσp̂µp̂ρ
)

. (26)
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In performing the group contraction from Poincaré to
Galileo, observe that for a system of particles of mass m
and velocity v, the various operators are expected to be of
the following orders [18]: ̂J i ∼ 1, ̂P i ∼mv, ̂J 0i =−̂Gi ∼
1/v, θij ∼ 1/m2v2, θ0i ∼ 0, P0 =H∼m+mv2 (energy ∼
mass energy + kinetic/potential energy) and finally the
limit v� 1 has to be taken. The space component of (26)
contract to (24). Likewise the other relations (22) and (23)
also follow on taking appropriate limits.
It is possible to discuss another generalisation of the

Galilean algebra such that, for two dimensions, the usual
algebra (but with noncommuting boosts) is obtained. This
happens if the boost and angular momentum are taken as
(20) and (9). Then the only modifications are in the algebra
of boosts (once again given by (22)) and (23) is replaced by

[

̂Gi, ̂J k�
]

= i
(

δi� ̂Gk− δik ̂G�
)

+im

(

λ−
1

2

)

×
(

δikθ�j p̂j− δi�θkj p̂j− θikp̂�− θi�p̂k
)

.

(27)

The other brackets conform to the usual Galilean algebra.
Note that the algebra closes although it is distinct from
the standard Galilean algebra. For two dimensions, how-
ever, the additional piece vanishes. We get back the usual
Galilean algebra but the second central extension found in
the algebra of boosts persists. It should perhaps be pointed
out that although the contraction has been discussed for
a canonical space (constant noncommutativity) it could
equally well be discussed for other types of noncommuting
spaces, as for instance the Snyder space. It is however un-
likely that the same deformation as found here would be
obtained in that case also. This is because, by construction,
the Snyder algebra preserves Lorentz invariance, leading to
an unambiguous defintion of the Lorentz generators. The
algebra of the Galileo boosts, for example, obtained by
a contraction from the Lorentz algebra would just follow
the usual (undeformed) analysis.
To conclude, the deformed Schrödinger operators on

noncommutative space were obtained. These operators
preserved the standard Schrödinger algebra. For vanishing
θij , the undeformed operators were reproduced from the
deformed ones. The structures of the generators in the co-
ordinate and momentum representations were derived. In
the latter case there was a form invariance; i.e., the gen-
erators had the same form as in the usual (commutative)
description. Hence computations in theories in noncom-
mutative space are considerably simplified in the momen-
tum representation. It was possible to discuss a generalised
Galilean algebra that was also obtained from a contrac-
tion of a generalised Poincaré algebra. The commutator of
the boosts was nonvanishing, leading to a second central
extension valid in any dimensions. We discussed another
type of generalised Galilean algebra which, in two dimen-

sions, reduced to the usual form but retained the central
extension in the commutator of boosts. Thus our deformed
generators provided an alternative way of understanding
the second central extension of the planar Galilei group.

As a final remark it may be mentioned that it is possible
to develop, in exact analogy with the relativistic case, a dif-
ferential calculus involving higher order derivatives leading
to modified coproduct rules for the Schrödinger operators.
However the algebra of these deformed operators retains
the usual undeformed form. The details of this analysis will
be given elsewhere.
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